机器视觉顾名思义是使机器具有像人一样的视觉功能,从而实现各种检测、判断、识别、测量、定位等功能。机器视觉可以显著提高生产效率和自动化、智能化程度。一个典型的机器视觉系统包括:光源、镜头、相机、图像处理硬件、图像处理软件、执行单元等。
机器视觉综合了光学、机械、电子、计算机软硬件方面的技术,涉及图像处理、模式识别、人工智能、光机电一体化等多个领域。
近年来,图像处理和人工智能等技术的快速发展,极大地推动了机器视觉的发展。机器视觉是什么?
首先要了解的是机器视觉系统工作原理,机器视觉系统通过图像采集硬件(相机、镜头、光源等)将光信号转换成图像信号,并传送给图像处理软件。图像处理软件根据像素亮度、颜色分布等信息,对目标进行特征提取,并做出相应的判断,根据结果输出来控制现场设备,实现检测功能。视觉处理系统包含硬件和软件两方面。根据硬件的不同,机器视觉系统分为智能相机和基于PC的视觉系统。一个基于PC的机器视觉系统核心的部分由光源、镜头、相机、视觉处理系统四个部分组成。镜头主要作用是将被测目标成像至摄像机的感光芯片上。相机主要作用是采集图像,将光信号转换成电信号,从而输出图像给计算机。软件的核心技术为图像处理及分析算法,它包括图像增强、图像分割、特征抽取、图像识别与分析等。通过图像处理与分析,对产品质量判断、尺寸测量,并将结果信号传输到相应的硬件进行显示或执行。
机器视觉与人工视觉的对比,在以往大批量工业生产过程中,主要靠人工视觉对产品进行测量、识别和分析。由于人工视觉处理时,效率低,稳定性差且精度不高,用机器视觉可以大幅度提高处理效率和自动化程度。
同时,在一些不适合人工作业的危险工作环境或人眼难以满足要求的场合,也常用机器视觉来替代人眼,如核电站监控、晶圆缺陷检测。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术之一。
由于机器视觉系统可快速获取大量信息,且易于自动处理及信息集成,故在现代自动化生产过程中,机器视觉系统广泛用于装配定位、产品质量检测、产品识别、尺寸测量等方面。机器视觉与人工视觉主要区别如右表。